
To apply GNNs, molecules are first converted into graphs where nodes 
represent atoms while edges represent chemical bonds between 
atoms.

To learn feature representations relevant to molecular property 
prediction downstream tasks, we chose to design the pretext tasks of 
our self-supervised framework around 3 different scales of molecules 
which are all relevant to predicting molecular properties:

● Molecule level: Although many self-supervised methods for 
GNNs only focus on node level pre-training, molecular properties 
are often related to global molecular level characteristics 
therefore it is important to consider pretext task associated with 
graph level representations. The molecule level pretext task is a 
multi-label classification task where the model is taught to 
recognize which fragments, from a predefined list of 2000 
molecular fragments, are present in the molecule.
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In drug discovery pipelines, computational methods have become of critical importance to allow virtual screening of large datasets of molecules 
and select promising candidates for further experimental validation.
Graph Neural Networks (GNNs) based predictive models have been successfully applied to the task of predicting molecular properties [1], however 
their potential is still limited by their reliance on large quantities of annotated data to reach desirable performance.
Several large databases of chemical compounds, like ZINC [2], counting millions to billions of samples have become available. Those provide 
massive amounts of unlabeled data and open up the way to unsupervised learning methods such as self-supervised learning.

We introduce a self-supervised framework tailored specifically for GNNs and molecular property prediction and evaluate its performance on a 
variety of benchmark datasets and GNN architectures. We also analyze the impact of the choice of input features on the benefits provided by 
self-supervision. 

For each experiment, the dataset was splitted into  80%/10%/10% 
train, validation and test sets using scaffold splitting. We measured the 
ROC-AUC on the test set and report both the mean value and standard 
deviation across 10 runs. We also report the results of two other 
state-of-the-art methods: GROVER [3] and Hu et al. [4].

Improvement largely varies depending on the dataset and model 
however when using a reduced set of input features the improvement 
obtained by using self-supervision significantly increases and becomes 
more consistent.

Our results indicate that self-supervision can successfully improve the 
performance of GNNs for molecular property prediction, especially in 
low data regime. However, our framework was not able to improve the 
performance consistently across datasets and architectures. Another 
important finding highlighted is the importance of the choice of input 
features for self-supervision. When using a very limited set of input 
features, the gain in performance obtained by applying self-supervision 
increased significantly and was consistent across all datasets and GNN 
architectures tested.

[1] Kevin Yang, et Al.: Analyzing learned molecular representations for property prediction. Journal of Chemical 

Information and Modeling, 59(8):3370–3388, Aug 2019. ISSN 1549-9596. doi: 10.1021/acs.jcim.9b00237

[2] Shoichet Brian K Irwin John J. Zinc–a free database of commercially available compounds for virtual screening. 

Journal of chemical information and modeling, 2005. doi: 10.1021/ci049714

[3] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang. Self-supervised 

graph transformer on large-scale molecular data. 2020

[4] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure Leskovec. Pre-training 

graph neural networks. CoRR, abs/1905.12265, 2019

● Fragment level: Some properties, such as toxicity, are especially related to the presence of certain functional groups and therefore best 
understood on the molecular fragment level. The fragment level pretext task is based on decomposing the molecules into fragments of 
random sizes and removing the edges between distinct fragments, then training the model to recognize which fragments originate from the 
same molecules. This is cast as a binary classification problems where the logits are obtained by dot product comparison of pairs of feature 
representations. 

● Atom level: The core of GNNs is to extract node level representations from which graph level representations can then be obtained, it is 
therefore critical to also pretrain the GNN at the node level to ensure useful graph level representations. The atom level pretext task is defined 
as a classification problem to recognize which fragment each atom belongs to. Using the same 2000 fragments as in the molecule level task, 
each atom is labeled as the largest fragment it belongs to and the model is trained on this classification task.

The final loss to optimize is a weighted combination of the loss for each task:


